

RESEARCH JOURNAL OF Phytochemistry

Editors

Dr. Showkat R. Mir,

Editor, Phyto-pharmaceutical Research Lab. Department of Pharmacognosy & Phytochemistry School of Pharmaceutical Sciences & Research Jamia Hamdard, PO Hamdard Nagar New Delhi 110062

Dr. Saima Amin

Co-editors, School of Pharmaceutical Sciences & Research, Jamia Hamdard, PO Hamdard Nagar New Delhi, India

Dr. Javed Ahamad

Co-editors, Faculty of Pharmacy, Tishk International University, Erbil, Iraq

rjp.scione.com

Disclaimer:

All these abstracts were presented at the AICTE sponsored e-Conference on Phytopharmaceuticals held on August 6, 2020 by School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi.

Formulation and Characterization of Self Nano Emulsifying Drug Delivery System Containing Phytochemical

Heena Farooqui and Prashant Upadhyay School of Pharmaceutical Sciences, IFTM University, Moradabad, U.P, India.

ABSTRACT

Background and Aim: The objective of present work was to enhance the dissolution properties of a poorly water soluble phytochemical (a drug of natural origin) by formulating self nano emulsifying drug delivery system (SNEDDS). Self nano emulsifying region was determined by pseudo-ternary phase diagrams.

Methods: Box-Bhenken experimental design was employed to optimize the best formulation. Formulation contains amount of oil, surfactant and co-surfactant as independent variables.

Results: These formulations were characterized for self emulsifying time, particle size, zeta potential, PDI, entrapment efficiency and drug release (Table 1). The drug and excipients compatibility was verified by recording DSC and FTIR.

Conclusion: The optimized SNEDDS showed improved solubility of the poor water dissolving phytochemical.

Particle Size Source	Sum of Squares	df	Mean Square	F- Value	P- Value	VIF	Coefficient Estimate	95% CI Low	95% Cl High
Model	2.276E±05	9	25286.49	1.17	0.5005		236.42	-8316	556
A: Oil	63606.78	1	63606.78	2.95	0.1844	3.00	182.97	-156	522
B: Surfactant	15609.30	1	15609.30	0.7238	0.4574	1.51	-58.42	-276	160
C: Consurfactant	1.389E±05	1	1.389E±05	6.44	0.0849	1.52	162.56	-41	366
AB	8905	1	8905	0.4129	0.5662	1.44	80	-316	476
AC	74610	1	74610	3.46	0.1598	1.75	211.08	-150	572
BC	11147	1	11147	0.5169	0.5241	1.08	-49	-267	169
A2	27861.08	1	27861	1.29	0.3383	1.38	-109	-414	196
B2	84707.32	1	84707	3.93	0.1418	2.23	-241	-630	146
C2	1.155E+05	1	1.155E+05	5.36	0.4036	2.32	-123	-234	156

Table 1: Particle Size of SNEDDS Analysis

Copyright: © 2022 Heena Farooqui *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Volume 16, Issue 1, 2022 Research Journal of Phytochemistry | Page 014

Si Journal of Phytochemistry

Aims & Scope

Research Journal of Phytochemistry is a leading international journal publishing peer reviewed scientific literature in four issues annually. Research Journal of Phytochemistry covers research on all aspects of plant chemistry, plant biochemistry, plant molecular biology and chemical ecology.

Author's Benefits

ورکې Rigo

Rigorous Peer-Review

Friendly and constructive peer-review of your paper by specialized referees

High Publication Standards

Rapid production combined with expert copyediting, proofreading, and final presentation

Impact Metrics

Keep track of your research impact with article-level metrics

Authors Retain Copyright

We use the Creative Commons Attribution (CC BY) license that allows the author to retain copyright

Science International is a member of

Follow Us

- facebook.com/scienceinternational
 - twitter.com/science_intl
- linkedin.com/company/scienceinternational
- youtube.com/scienceinternational

scienceinternational.com

Science International, a digital researcher-led publishing platform of open access journals, operates with a highly cost-efficient model that makes quality publishing affordable for everyone.

rjp.scione.com